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Abstract

The aim of this talk is to present some stability results for models describing
the motion of a compressible fluid under magnetic influence. On the one hand,
we follow the works of P.-L. Lions and E. Feireisl on Navier-Stokes equations for
compressible fluids to get the existence of global weak solutions of a classical
MHD model with constant viscosity in the adiabatic case P (%) = %γ , γ >
3/2. On the other hand, for models with density-dependent viscosities, we
take advantage of the BD entropy recently introduced by D. Bresch and B.
Desjardins. We first talk about the nonlinear form of electromagnetism given
by the 3D Born-Infeld system. We get the stability of weak solutions for the
complete Augmented Born-Infeld model with temperature equation and the
perfect gas law P (%, θ) = r%θ. The main tool of the strategy given by D. Bresch
and B. Desjardins consist in obtaining a better control of the density through
the estimate ∫ T

0
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Ω
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for a viscosity µ separetly defined for small and large densities. This way can
also be followed to study a 2D MHD model of a fluid-fluid diffuse interface for
quite different conditions especially about the viscosity and resistivity profiles.
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