Harmonic vector fields in 3D bounded domains and its application to the stationary Navier-Stokes equations

Hideo Kozono

Mathematical Institute, Tohoku University, Japan kozono@math.tohoku.ac.jp

Taku Yanagisawa

Department of Mathematics, Nara Women's University, Japan taku@cc.nara-wu.ac.jp

Abstract

The first aim of this talk is to show some decomposition theorem on the vector fields in $L^r(\Omega)$ for $1 < r < \infty$, where Ω is a bounded domain in \mathbb{R}^3 with C^{∞} -boundary $\partial\Omega$. Let us define two spaces $V_{har}(\Omega)$ and $X^r_{\sigma}(\Omega)$ by

 $V_{har}(\Omega) \equiv \{h \in C^{\infty}(\overline{\Omega}); \text{div } h = 0, \text{ rot } h = 0 \text{ in } \Omega, \quad h \times \nu = 0 \text{ on } \partial\Omega\}, \\ X^{r}_{\sigma}(\Omega) \equiv \{w \in W^{1,r}(\Omega); \text{div } w = 0 \text{ in } \Omega, \quad w \cdot \nu = 0 \text{ on } \partial\Omega\},$

where ν is the unit outer normal to $\partial\Omega$. Then it holds that

 $L^{r}(\Omega) = V_{har}(\Omega) \oplus \operatorname{rot} X^{r}_{\sigma}(\Omega) \oplus \nabla W^{1,r}_{0}(\Omega), \quad 1 < r < \infty \quad (\text{direct sum}).$

As an application of our decomposition theorem, we consider the *inhomogeneous* boundary value problem of the stationary Navier-Stokes equations in Ω when $\partial\Omega$ consists of N + 1-disjoint C^{∞} -surfaces $\Gamma_0, \Gamma_1, \cdots, \Gamma_N$, where $\{\Gamma_j\}_{j=1}^N$ lie in Γ_0 ;

 $(\text{N-S}) \qquad -\mu\Delta u + u\cdot\nabla u + \nabla p = 0, \quad \text{div} \; u = 0 \quad \text{in} \; \Omega \;, \quad u = \beta \quad \text{on} \; \partial\Omega.$

Here $\mu > 0$ is the viscosity constant and $\beta \in H^{1/2}(\partial \Omega)$ is the given boundary data on $\partial \Omega = \bigcup_{j=0}^{N} \Gamma_{j}$.

We take N-harmonic functions q_1, \dots, q_N in Ω so that $q_j|_{\Gamma_0} = 0$ and $q_j|_{\Gamma_k} = \delta_{jk}$ for $j, k = 1, \dots, N$. Define $\psi_j \equiv \nabla q_j, j = 1, \dots, N$. It is shown that $\{\psi_1, \dots, \psi_N\}$ is a basis of $V_{har}(\Omega)$. Taking the Gramm matrix $\{\alpha_{jk}\}_{1 \leq j,k \leq N}$ defined by $\{\psi_1, \dots, \psi_N\}$, we see that $\varphi_j \equiv \sum_{k=1}^N \alpha_{jk} \psi_k, j = 1, \dots, N$ is an orthogonal basis of $V_{har}(\Omega)$ in the sense of $L^2(\Omega)$. Then we have

Theorem. Let $\beta \in H^{1/2}(\partial \Omega)$ satisfy the general flux condition $\sum_{j=0}^{N} \int_{\Gamma_j} \beta \cdot \nu dS = 0.$

$$\left\| \sum_{j,k=1}^{N} \alpha_{jk} \left(\int_{\Gamma_k} \beta \cdot \nu dS \right) \varphi_j \right\|_{L^3(\Omega)} < \mu C_s^{-1}$$

If

then there exists at least one weak solution $u \in H^1(\Omega)$ of (N-S). Here $C_s = 3^{-\frac{1}{2}}2^{\frac{2}{3}}\pi^{-\frac{2}{3}}$ is the best constant of the Sobolev embedding $H^1_0(\Omega) \subset L^6(\Omega)$.

Keywords: harmonic vector fields, general flux condition, Leray's inequality