# Harmonic vector fields in 3D bounded domains and its application to the stationary Navier-Stokes equations 

Hideo Kozono<br>Mathematical Institute, Tohoku University, Japan<br>kozono@math.tohoku.ac.jp<br>Taku Yanagisawa<br>Department of Mathematics, Nara Women's University, Japan<br>taku@cc.nara-wu.ac.jp


#### Abstract

The first aim of this talk is to show some decomposition theorem on the vector fields in $L^{r}(\Omega)$ for $1<r<\infty$, where $\Omega$ is a bounded domain in $\mathbf{R}^{3}$ with $C^{\infty}$-boundary $\partial \Omega$. Let us define two spaces $V_{h a r}(\Omega)$ and $X_{\sigma}^{r}(\Omega)$ by $$
\begin{array}{llll} V_{h a r}(\Omega) \equiv\left\{h \in C^{\infty}(\bar{\Omega}) ; \operatorname{div} h=0,\right. & \text { rot } h=0 \quad \text { in } \Omega, \quad h \times \nu=0 & \text { on } \partial \Omega\}, \\ X_{\sigma}^{r}(\Omega) \equiv\left\{w \in W^{1, r}(\Omega) ; \operatorname{div} w=0\right. & \text { in } \Omega, \quad w \cdot \nu=0 & \text { on } \partial \Omega\}, \end{array}
$$


where $\nu$ is the unit outer normal to $\partial \Omega$. Then it holds that

$$
L^{r}(\Omega)=V_{h a r}(\Omega) \oplus \operatorname{rot} X_{\sigma}^{r}(\Omega) \oplus \nabla W_{0}^{1, r}(\Omega), \quad 1<r<\infty \quad \text { (direct sum) }
$$

As an application of our decomposition theorem, we consider the inhomogeneous boundary value problem of the stationary Navier-Stokes equations in $\Omega$ when $\partial \Omega$ consists of $N+1$-disjoint $C^{\infty}$-surfaces $\Gamma_{0}, \Gamma_{1}, \cdots, \Gamma_{N}$, where $\left\{\Gamma_{j}\right\}_{j=1}^{N}$ lie in $\Gamma_{0}$;
(N-S) $\quad-\mu \Delta u+u \cdot \nabla u+\nabla p=0, \quad \operatorname{div} u=0 \quad$ in $\Omega, \quad u=\beta \quad$ on $\partial \Omega$.
Here $\mu>0$ is the viscosity constant and $\beta \in H^{1 / 2}(\partial \Omega)$ is the given boundary data on $\partial \Omega=\cup_{j=0}^{N} \Gamma_{j}$.

We take $N$-harmonic functions $q_{1}, \cdots, q_{N}$ in $\Omega$ so that $\left.q_{j}\right|_{\Gamma_{0}}=0$ and $\left.q_{j}\right|_{\Gamma_{k}}=\delta_{j k}$ for $j, k=1, \cdots, N$. Define $\psi_{j} \equiv \nabla q_{j}, j=1, \cdots, N$. It is shown that $\left\{\psi_{1}, \cdots, \psi_{N}\right\}$ is a basis of $V_{h a r}(\Omega)$. Taking the Gramm matrix $\left\{\alpha_{j k}\right\}_{1 \leqq j, k \leqq N}$ defined by $\left\{\psi_{1}, \cdots, \psi_{N}\right\}$, we see that $\varphi_{j} \equiv \sum_{k=1}^{N} \alpha_{j k} \psi_{k}, j=1, \cdots, N$ is an orthogonal basis of $V_{\text {har }}(\Omega)$ in the sense of $L^{2}(\Omega)$. Then we have

Theorem. Let $\beta \in H^{1 / 2}(\partial \Omega)$ satisfy the general flux condition $\sum_{j=0}^{N} \int_{\Gamma_{j}} \beta \cdot \nu d S=0$. If

$$
\left\|\sum_{j, k=1}^{N} \alpha_{j k}\left(\int_{\Gamma_{k}} \beta \cdot \nu d S\right) \varphi_{j}\right\|_{L^{3}(\Omega)}<\mu C_{s}^{-1},
$$

then there exists at least one weak solution $u \in H^{1}(\Omega)$ of (N-S). Here $C_{s}=$ $3^{-\frac{1}{2}} 2^{\frac{2}{3}} \pi^{-\frac{2}{3}}$ is the best constant of the Sobolev embedding $H_{0}^{1}(\Omega) \subset L^{6}(\Omega)$.

Keywords: harmonic vector fields, general flux condition, Leray's inequality

